Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.943
Filtrar
Más filtros











Intervalo de año de publicación
1.
Life Sci ; 347: 122682, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38702025

RESUMEN

Thyroid cancer is one of the most common primary endocrine malignancies worldwide, and papillary thyroid carcinoma (PTC) is the predominant histological type observed therein. Although PTC has been studied extensively, our understanding of the altered metabolism and metabolic profile of PTC tumors is limited. We identified that the content of metabolite homogentisic acid (HGA) in PTC tissues was lower than that in adjacent non-cancerous tissues. We evaluated the potential of HGA as a novel molecular marker in the diagnosis of PTC tumors, as well as its ability to indicate the degree of malignancy. Studies have further shown that HGA contributes to reactive oxygen species (ROS) associated oxidative stress, leading to toxicity and inhibition of proliferation. In addition, HGA caused an increase in p21 expression levels in PTC cells and induced G1 arrest. Moreover, we found that the low HGA content in PTC tumors was due to the low expression levels of tyrosine aminotransferase (TAT) and p-hydroxyphenylpyruvate hydroxylase (HPD), which catalyze the conversion of tyrosine to HGA. The low expression levels of TAT and HPD are strongly associated with a higher probability of PTC tumor invasion and metastasis. Our study demonstrates that HGA could be used to diagnose PTC and provides mechanisms linking altered HGA levels to the biological behavior of PTC tumors.


Asunto(s)
Puntos de Control del Ciclo Celular , Proliferación Celular , Inhibidor p21 de las Quinasas Dependientes de la Ciclina , Ácido Homogentísico , Especies Reactivas de Oxígeno , Cáncer Papilar Tiroideo , Neoplasias de la Tiroides , Humanos , Especies Reactivas de Oxígeno/metabolismo , Neoplasias de la Tiroides/patología , Neoplasias de la Tiroides/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Cáncer Papilar Tiroideo/patología , Cáncer Papilar Tiroideo/metabolismo , Ácido Homogentísico/metabolismo , Femenino , Masculino , Persona de Mediana Edad , Línea Celular Tumoral , Estrés Oxidativo , Carcinoma Papilar/patología , Carcinoma Papilar/metabolismo , Adulto
2.
Int J Mol Sci ; 25(9)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38731817

RESUMEN

MCPH1 has been identified as the causal gene for primary microcephaly type 1, a neurodevelopmental disorder characterized by reduced brain size and delayed growth. As a multifunction protein, MCPH1 has been reported to repress the expression of TERT and interact with transcriptional regulator E2F1. However, it remains unclear whether MCPH1 regulates brain development through its transcriptional regulation function. This study showed that the knockout of Mcph1 in mice leads to delayed growth as early as the embryo stage E11.5. Transcriptome analysis (RNA-seq) revealed that the deletion of Mcph1 resulted in changes in the expression levels of a limited number of genes. Although the expression of some of E2F1 targets, such as Satb2 and Cdkn1c, was affected, the differentially expressed genes (DEGs) were not significantly enriched as E2F1 target genes. Further investigations showed that primary and immortalized Mcph1 knockout mouse embryonic fibroblasts (MEFs) exhibited cell cycle arrest and cellular senescence phenotype. Interestingly, the upregulation of p19ARF was detected in Mcph1 knockout MEFs, and silencing p19Arf restored the cell cycle and growth arrest to wild-type levels. Our findings suggested it is unlikely that MCPH1 regulates neurodevelopment through E2F1-mediated transcriptional regulation, and p19ARF-dependent cell cycle arrest and cellular senescence may contribute to the developmental abnormalities observed in primary microcephaly.


Asunto(s)
Puntos de Control del Ciclo Celular , Senescencia Celular , Inhibidor p16 de la Quinasa Dependiente de Ciclina , Ratones Noqueados , Microcefalia , Animales , Ratones , Senescencia Celular/genética , Microcefalia/genética , Microcefalia/metabolismo , Microcefalia/patología , Puntos de Control del Ciclo Celular/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Inhibidor p16 de la Quinasa Dependiente de Ciclina/deficiencia , Factor de Transcripción E2F1/genética , Factor de Transcripción E2F1/metabolismo , Fibroblastos/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo
3.
Mol Biol Rep ; 51(1): 611, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38704796

RESUMEN

BACKGROUND: Endophytic fungi have an abundant sources rich source of rich bioactive molecules with pivotal pharmacological properties. Several studies have found that endophytic fungi-derived bioactive secondary metabolites have antiproliferative, anti-oxidant, and anti-inflammatory properties, but the molecular mechanism by which they induce cell cycle arrest and apoptosis pathways is unknown. This study aimed to determine the molecular mechanism underlying the anticancer property of the endophytic fungi derived active secondary metabolites on human breast cancer cells. METHODS: In this study, we identified four endophytic fungi from marine seaweeds and partially screened its phytochemical properties by Chromatography-Mass Spectrometry (GC-MS) analysis. Moreover, the molecular mechanism underlying the anticancer property of these active secondary metabolites (FA, FB, FC and FE) on human breast cancer cells were examined on MCF-7 cells by TT assay, Apoptotic assay by Acridine orang/Ethidium Bromide (Dual Staining), DNA Fragmentation by DAPI Staining, reactive oxygen species (ROS) determination by DCFH-DA assay, Cell cycle analysis was conducted Flow cytometry and the apoptotic signalling pathway was evaluated by westernblot analysis. Doxorubicin was used as a positive control drug for this experiment. RESULTS: The GC-MS analysis of ethyl acetate extract of endophytic fungi from the marine macro-algae revealed the different functional groups and bioactive secondary metabolites. From the library, we observed the FC (76%), FB (75%), FA (73%) and FE (71%) have high level of antioxidant activity which was assessed by DPPH scavenging assay. Further, we evaluated the cytotoxic potentials of these secondary metabolites on human breast cancer MCF-7 cells for 24 h and the IC50 value were calculated (FA:28.62 ± 0.3 µg/ml, FB:49.81 ± 2.5 µg/ml, FC:139.42 ± µg/ml and FE:22.47 ± 0.5 µg/ul) along with positive control Doxorubicin 15.64 ± 0.8 µg/ml respectively by MTT assay. The molecular mechanism by which the four active compound induced apoptosis via reactive oxygen species (ROS) and cell cycle arrest in MCF-7 cells was determined H2DCFDA staining, DAPI staining, Acridine orange and ethidium bromide (AO/EtBr) dual staining, flowcytometry analysis with PI staining and apoptotic key regulatory proteins expression levels measured by westernblot analysis. CONCLUSION: Our findings, revealed the anticancer potential of endophytic fungi from marine seaweed as a valuable source of bioactive compounds with anticancer properties and underscore the significance of exploring marine-derived endophytic fungi as a promising avenue for the development of novel anticancer agents. Further investigations are necessary to isolate and characterize specific bioactive compounds responsible for these effects and to validate their therapeutic potential in preclinical and clinical settings.


Asunto(s)
Apoptosis , Neoplasias de la Mama , Puntos de Control del Ciclo Celular , Endófitos , Especies Reactivas de Oxígeno , Algas Marinas , Humanos , Especies Reactivas de Oxígeno/metabolismo , Apoptosis/efectos de los fármacos , Células MCF-7 , Puntos de Control del Ciclo Celular/efectos de los fármacos , Algas Marinas/microbiología , Algas Marinas/química , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Neoplasias de la Mama/microbiología , Femenino , Endófitos/metabolismo , Hongos , Antineoplásicos/farmacología , Proliferación Celular/efectos de los fármacos , Cromatografía de Gases y Espectrometría de Masas
4.
Sci Rep ; 14(1): 10958, 2024 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-38740853

RESUMEN

Adoption of plant-derived compounds for the management of oral cancer is encouraged by the scientific community due to emerging chemoresistance and conventional treatments adverse effects. Considering that very few studies investigated eugenol clinical relevance for gingival carcinoma, we ought to explore its selectivity and performance according to aggressiveness level. For this purpose, non-oncogenic human oral epithelial cells (GMSM-K) were used together with the Tongue (SCC-9) and Gingival (Ca9-22) squamous cell carcinoma lines to assess key tumorigenesis processes. Overall, eugenol inhibited cell proliferation and colony formation while inducing cytotoxicity in cancer cells as compared to normal counterparts. The recorded effect was greater in gingival carcinoma and appears to be mediated through apoptosis induction and promotion of p21/p27/cyclin D1 modulation and subsequent Ca9-22 cell cycle arrest at the G0/G1 phase, in a p53-independent manner. At these levels, distinct genetic profiles were uncovered for both cell lines by QPCR array. Moreover, it seems that our active component limited Ca9-22 and SCC-9 cell migration respectively through MMP1/3 downregulation and stimulation of inactive MMPs complex formation. Finally, Ca9-22 behaviour appears to be mainly modulated by the P38/STAT5/NFkB pathways. In summary, we can disclose that eugenol is cancer selective and that its mediated anti-cancer mechanisms vary according to the cell line with gingival squamous cell carcinoma being more sensitive to this phytotherapy agent.


Asunto(s)
Apoptosis , Carcinoma de Células Escamosas , Proliferación Celular , Eugenol , Neoplasias Gingivales , Humanos , Eugenol/farmacología , Eugenol/uso terapéutico , Neoplasias Gingivales/tratamiento farmacológico , Neoplasias Gingivales/patología , Neoplasias Gingivales/metabolismo , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Apoptosis/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Quimioterapia Adyuvante/métodos
5.
Int J Mol Sci ; 25(9)2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38732206

RESUMEN

Breast cancer stands out as one of the most prevalent malignancies worldwide, necessitating a nuanced understanding of its molecular underpinnings for effective treatment. Hormone receptors in breast cancer cells substantially influence treatment strategies, dictating therapeutic approaches in clinical settings, serving as a guide for drug development, and aiming to enhance treatment specificity and efficacy. Natural compounds, such as curcumin, offer a diverse array of chemical structures with promising therapeutic potential. Despite curcumin's benefits, challenges like poor solubility and rapid metabolism have spurred the exploration of analogs. Here, we evaluated the efficacy of the curcumin analog NC2603 to induce cell cycle arrest in MCF-7 breast cancer cells and explored its molecular mechanisms. Our findings reveal potent inhibition of cell viability (IC50 = 5.6 µM) and greater specificity than doxorubicin toward MCF-7 vs. non-cancer HaCaT cells. Transcriptome analysis identified 12,055 modulated genes, most notably upregulation of GADD45A and downregulation of ESR1, implicating CDKN1A-mediated regulation of proliferation and cell cycle genes. We hypothesize that the curcumin analog by inducing GADD45A expression and repressing ESR1, triggers the expression of CDKN1A, which in turn downregulates the expression of many important genes of proliferation and the cell cycle. These insights advance our understanding of curcumin analogs' therapeutic potential, highlighting not just their role in treatment, but also the molecular pathways involved in their activity toward breast cancer cells.


Asunto(s)
Neoplasias de la Mama , Puntos de Control del Ciclo Celular , Curcumina , Inhibidor p21 de las Quinasas Dependientes de la Ciclina , Regulación Neoplásica de la Expresión Génica , Humanos , Curcumina/farmacología , Curcumina/análogos & derivados , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Células MCF-7 , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Puntos de Control del Ciclo Celular/efectos de los fármacos , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Receptor alfa de Estrógeno/metabolismo , Receptor alfa de Estrógeno/genética , Antineoplásicos/farmacología , Proteinas GADD45
6.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38732133

RESUMEN

Treating female canine mammary gland tumors is crucial owing to their propensity for rapid progression and metastasis, significantly impacting the overall health and well-being of dogs. Mitoquinone (MitoQ), an antioxidant, has shown promise in inhibiting the migration, invasion, and clonogenicity of human breast cancer cells. Thus, we investigated MitoQ's potential anticancer properties against canine mammary gland tumor cells, CMT-U27 and CF41.Mg. MitoQ markedly suppressed the proliferation and migration of both CMT-U27 and CF41.Mg cells and induced apoptotic cell death in a dose-dependent manner. Furthermore, treatment with MitoQ led to increased levels of pro-apoptotic proteins, including cleaved-caspase3, BAX, and phospho-p53. Cell cycle analysis revealed that MitoQ hindered cell progression in the G1 and S phases in CMT-U27 and CF41.Mg cells. These findings were supported using western blot analysis, demonstrating elevated levels of cleaved caspase-3, a hallmark of apoptosis, and decreased expression of cyclin-dependent kinase (CDK) 2 and cyclin D4, pivotal regulators of the cell cycle. In conclusion, MitoQ exhibits in vitro antitumor effects by inducing apoptosis and arresting the cell cycle in canine mammary gland tumors, suggesting its potential as a preventive or therapeutic agent against canine mammary cancer.


Asunto(s)
Antineoplásicos , Apoptosis , Puntos de Control del Ciclo Celular , Proliferación Celular , Neoplasias Mamarias Animales , Compuestos Organofosforados , Ubiquinona , Animales , Perros , Apoptosis/efectos de los fármacos , Neoplasias Mamarias Animales/tratamiento farmacológico , Neoplasias Mamarias Animales/patología , Neoplasias Mamarias Animales/metabolismo , Femenino , Línea Celular Tumoral , Puntos de Control del Ciclo Celular/efectos de los fármacos , Antineoplásicos/farmacología , Ubiquinona/análogos & derivados , Ubiquinona/farmacología , Compuestos Organofosforados/farmacología , Proliferación Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos
7.
Anticancer Drugs ; 35(6): 512-524, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38602174

RESUMEN

Repurposing existing drugs for cancer therapy has become an important strategy because of its advantages, such as cost reduction, effect and safety. The present study was designed to investigate the antimelanoma effect and possible mechanisms of action of nebivolol, which is an approved and widely prescribed antihypertensive agent. In this study, we explored the effect of nebivolol on cell proliferation and cell activity in melanoma in vitro and the potential antimelanoma mechanism of nebivolol through a series of experiments, including the analysis of the effects with regard to cell apoptosis and metastasis. Furthermore, we evaluated the antimelanoma effect on xenograft tumor models and inspected the antimelanoma mechanism of nebivolol in vivo using immunohistochemical and immunofluorescence staining assays. As results in this work, in vitro , nebivolol possessed a strong activity for suppression proliferation and cell cycle arrest on melanoma. Moreover, nebivolol significantly induced cell apoptosis in melanoma through a mitochondrial-mediated endogenous apoptosis pathway. Additionally, nebivolol inhibited melanoma cell metastasis. More importantly, nebivolol exhibited significantly effective melanoma xenograft models in vivo , which related to the mechanism of apoptosis induction, proliferation inhibition, metastasis blocking and angiogenesis arrest. Overall, the data of the present study recommend that nebivolol holds great potential in application as a novel agent for the treatment of melanoma.


Asunto(s)
Antihipertensivos , Apoptosis , Proliferación Celular , Melanoma , Nebivolol , Ensayos Antitumor por Modelo de Xenoinjerto , Nebivolol/farmacología , Nebivolol/uso terapéutico , Animales , Humanos , Melanoma/tratamiento farmacológico , Melanoma/patología , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Ratones , Antihipertensivos/farmacología , Antihipertensivos/uso terapéutico , Línea Celular Tumoral , Ratones Desnudos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/patología , Movimiento Celular/efectos de los fármacos
8.
BMC Cancer ; 24(1): 525, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664644

RESUMEN

BACKGROUND: Regorafenib, a multi-targeted kinase inhibitor, has been used in the treatment of Hepatocellular carcinoma (HCC). The purpose of this study is to investigate the mechanism of Regorafenib in HCC. METHODS: Regorafenib's impact on the sensitivity of HCC cells was assessed using CCK8. Differential gene expression analysis was performed by conducting mRNA sequencing after treatment with Regorafenib. The m6A methylation status of CHOP and differential expression of m6A methylation-related proteins were assessed by RIP and Western Blot. To explore the molecular mechanisms involved in the therapeutic effects of Regorafenib in HCC and the impact of METTL14 and CHOP on Regorafenib treatment, we employed shRNA/overexpression approaches to transfect METTL14 and CHOP genes, as well as conducted in vivo experiments. RESULTS: Treatment with Regorafenib led to a notable decrease in viability and proliferation of SK-Hep-1 and HCC-LM3 cells. The expression level of CHOP was upregulated after Regorafenib intervention, and CHOP underwent m6A methylation. Among the m6A methylation-related proteins, METTL14 exhibited the most significant downregulation. Mechanistic studies revealed that Regorafenib regulated the cell cycle arrest in HCC through METTL14-mediated modulation of CHOP, and the METTL14/CHOP axis affected the sensitivity of HCC to Regorafenib. In vivo, CHOP enhanced the anticancer effect of Regorafenib. CONCLUSION: The inhibition of HCC development by Regorafenib is attributed to its modulation of m6A expression of CHOP, mediated by METTL14, and the METTL14/CHOP axis enhances the sensitivity of HCC to Regorafenib. These findings provide insights into the treatment of HCC and the issue of drug resistance to Regorafenib.


Asunto(s)
Adenosina/análogos & derivados , Carcinoma Hepatocelular , Puntos de Control del Ciclo Celular , Neoplasias Hepáticas , Metiltransferasas , Compuestos de Fenilurea , Piridinas , Factor de Transcripción CHOP , Humanos , Piridinas/farmacología , Piridinas/uso terapéutico , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/metabolismo , Compuestos de Fenilurea/farmacología , Compuestos de Fenilurea/uso terapéutico , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/metabolismo , Ratones , Animales , Línea Celular Tumoral , Puntos de Control del Ciclo Celular/efectos de los fármacos , Metiltransferasas/metabolismo , Metiltransferasas/genética , Factor de Transcripción CHOP/metabolismo , Factor de Transcripción CHOP/genética , Proliferación Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Ensayos Antitumor por Modelo de Xenoinjerto , Ratones Desnudos
9.
Chem Biodivers ; 21(5): e202301776, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38602834

RESUMEN

A novel series of trifluoromethyl-containing quinazoline derivatives with a variety of functional groups was designed, synthesized, and tested for their antitumor activity by following a pharmacophore hybridization strategy. Most of the 20 compounds displayed moderate to excellent antiproliferative activity against five different cell lines (PC3, LNCaP, K562, HeLa, and A549). After three rounds of screening and structural optimization, compound 10 b was identified as the most potent one, with IC50 values of 3.02, 3.45, and 3.98 µM against PC3, LNCaP, and K562 cells, respectively, which were comparable to the effect of the positive control gefitinib. To further explore the mechanism of action of 10 b against cancer, experiments focusing on apoptosis induction, cell cycle arrest, and cell migration assay were conducted. The results showed that 10 b was able to induce apoptosis and prevent tumor cell migration, but had no effect on the cell cycle of tumor cells.


Asunto(s)
Antineoplásicos , Apoptosis , Movimiento Celular , Proliferación Celular , Diseño de Fármacos , Ensayos de Selección de Medicamentos Antitumorales , Quinazolinas , Humanos , Quinazolinas/farmacología , Quinazolinas/química , Quinazolinas/síntesis química , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Relación Estructura-Actividad , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Línea Celular Tumoral , Estructura Molecular , Relación Dosis-Respuesta a Droga , Puntos de Control del Ciclo Celular/efectos de los fármacos
10.
Molecules ; 29(8)2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38675591

RESUMEN

Ovarian cancer, a highly lethal malignancy among reproductive organ cancers, poses a significant challenge with its high mortality rate, particularly in advanced-stage cases resistant to platinum-based chemotherapy. This study explores the potential therapeutic efficacy of 1-methoxyisobrassinin (MB-591), a derivative of indole phytoalexins found in Cruciferae family plants, on both cisplatin-sensitive (A2780) and cisplatin-resistant ovarian cancer cells (A2780 cis). The findings reveal that MB-591 exhibits an antiproliferative effect on both cell lines, with significantly increased potency against cisplatin-sensitive cells. The substance induces alterations in the distribution of the cell cycle, particularly in the S and G2/M phases, accompanied by changes in key regulatory proteins. Moreover, MB-591 triggers apoptosis in both cell lines, involving caspase-9 cleavage, PARP cleavage induction, and DNA damage, accompanied by the generation of reactive oxygen species (ROS) and mitochondrial dysfunction. Notably, the substance selectively induces autophagy in cisplatin-resistant cells, suggesting potential targeted therapeutic applications. The study further explores the interplay between MB-591 and antioxidant N-acetylcysteine (NAC), in modulating cellular processes. NAC demonstrates a protective effect against MB-591-induced cytotoxicity, affecting cell cycle distribution and apoptosis-related proteins. Additionally, NAC exhibits inhibitory effects on autophagy initiation in cisplatin-resistant cells, suggesting its potential role in overcoming resistance mechanisms.


Asunto(s)
Acetilcisteína , Apoptosis , Autofagia , Proliferación Celular , Indoles , Neoplasias Ováricas , Fitoalexinas , Femenino , Humanos , Acetilcisteína/farmacología , Antineoplásicos/farmacología , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Cisplatino/farmacología , Daño del ADN/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Especies Reactivas de Oxígeno/metabolismo , Fitoalexinas/farmacología , Indoles/farmacología , Tiocarbamatos/farmacología
11.
J Transl Med ; 22(1): 344, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38600547

RESUMEN

Tumors are mostly characterized by genetic instability, as result of mutations in surveillance mechanisms, such as DNA damage checkpoint, DNA repair machinery and mitotic checkpoint. Defect in one or more of these mechanisms causes additive accumulation of mutations. Some of these mutations are drivers of transformation and are positively selected during the evolution of the cancer, giving a growth advantage on the cancer cells. If such mutations would result in mutated neoantigens, these could be actionable targets for cancer vaccines and/or adoptive cell therapies. However, the results of the present analysis show, for the first time, that the most prevalent mutations identified in human cancers do not express mutated neoantigens. The hypothesis is that this is the result of the selection operated by the immune system in the very early stages of tumor development. At that stage, the tumor cells characterized by mutations giving rise to highly antigenic non-self-mutated neoantigens would be efficiently targeted and eliminated. Consequently, the outgrowing tumor cells cannot be controlled by the immune system, with an ultimate growth advantage to form large tumors embedded in an immunosuppressive tumor microenvironment (TME). The outcome of such a negative selection operated by the immune system is that the development of off-the-shelf vaccines, based on shared mutated neoantigens, does not seem to be at hand. This finding represents the first demonstration of the key role of the immune system on shaping the tumor antigen presentation and the implication in the development of antitumor immunological strategies.


Asunto(s)
Vacunas contra el Cáncer , Neoplasias , Humanos , Neoplasias/genética , Neoplasias/terapia , Antígenos de Neoplasias/genética , Vacunas contra el Cáncer/genética , Mutación/genética , Puntos de Control del Ciclo Celular , Inmunoterapia , Microambiente Tumoral
12.
Oncol Rep ; 51(5)2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38577924

RESUMEN

Colorectal cancer (CRC) ranks as the second leading cause of cancer­related death worldwide due to its aggressive nature. After surgical resection, >50% of patients with CRC require adjuvant therapy. As a result, eradicating cancer cells with medications is a promising method to treat patients with CRC. In the present study, a novel compound was synthesized, which was termed compound 225#. The inhibitory activity of compound 225# against CRC was determined by MTT assay, EdU fluorescence labeling and colony formation assay; the effects of compound 225# on the cell cycle progression and apoptosis of CRC cells were detected by flow cytometry and western blotting; and the changes in autophagic flux after the administration of compound 225# were detected using the double fluorescence fusion protein mCherry­GFP­LC3B and western blotting. The results demonstrated that compound 225# exhibited antiproliferative properties, inhibiting the proliferation and expansion of CRC cell lines in a time­ and dose­dependent manner. Furthermore, compound 225# triggered G2/M cell cycle arrest by influencing the expression of cell cycle regulators, such as CDK1, cyclin A1 and cyclin B1, which is also closely related to the activation of DNA damage pathways. The cleavage of PARP and increased protein expression levels of PUMA suggested that apoptosis was triggered after treatment with compound 225#. Moreover, the increase in LC3­II expression and stimulation of autophagic flux indicated the activation of an autophagy pathway. Notably, compound 225# induced autophagy, which was associated with endoplasmic reticulum (ER) stress. In accordance with the in vitro findings, the in vivo results demonstrated that compound 225# effectively inhibited the growth of HCT116 tumors in mice without causing any changes in their body weight. Collectively, the present results demonstrated that compound 225# not only inhibited proliferation and promoted G2/M­phase cell cycle arrest and apoptosis, but also initiated cytoprotective autophagy in CRC cells by activating ER stress pathways. Taken together, these findings provide an experimental basis for the evaluation of compound 225# as a novel potential medication for CRC treatment.


Asunto(s)
Apoptosis , Neoplasias Colorrectales , Humanos , Animales , Ratones , Puntos de Control del Ciclo Celular , División Celular , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Proliferación Celular , Línea Celular Tumoral , Ciclo Celular
13.
Front Biosci (Landmark Ed) ; 29(4): 132, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38682202

RESUMEN

BACKGROUND: The incidence of melanoma brain metastasis (MBM) is high and significantly compromises patient survival and quality of life. Effective treatment of MBM is made difficult by the blood-brain barrier (BBB), since it restricts the entry of drugs into the brain. Certain anti-psychotic drugs able to cross the BBB have demonstrated efficacy in suppressing brain metastasis in preclinical studies. However, the activity of zuclopenthixol against MBM is not yet clear. METHODS: Cell viability assays were employed to investigate the potential of zuclopenthixol in the treatment of MBM. Subsequently, the mechanism of action was investigated by RNA-sequencing (RNAseq), flow cytometry-based cell cycle and apoptosis assays, protein expression analysis, and autophagy flux detection. Additionally, the efficacy of zuclopenthixol against tumor growth was investigated in vivo, including MBM models. RESULTS: Zuclopenthixol inhibited the proliferation of various melanoma cell lines at minimal doses by causing cell cycle arrest in the G0/G1 phase and mitochondrial-mediated intrinsic apoptosis. Zuclopenthixol also induced cytoprotective autophagy, and inhibition of autophagy enhanced the anti-melanoma effects of zuclopenthixol. Furthermore, zuclopenthixol inhibited the growth of human melanoma tumors in nude mice, as well as the growth of intracranial metastases in a mouse model of MBM. CONCLUSIONS: These results demonstrate that zuclopenthixol has significant potential as an effective therapeutic agent for MBM.


Asunto(s)
Apoptosis , Neoplasias Encefálicas , Puntos de Control del Ciclo Celular , Proliferación Celular , Melanoma , Apoptosis/efectos de los fármacos , Animales , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/secundario , Neoplasias Encefálicas/patología , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Humanos , Melanoma/tratamiento farmacológico , Melanoma/patología , Melanoma/metabolismo , Proliferación Celular/efectos de los fármacos , Ratones , Antipsicóticos/farmacología , Autofagia/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Ratones Desnudos , Supervivencia Celular/efectos de los fármacos
14.
Pestic Biochem Physiol ; 201: 105849, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38685233

RESUMEN

Beta-cypermethrin (ß-CYP) consists of four chiral isomers, acting as an environmental estrogen and causing reproductive toxicity, neurotoxicity, and dysfunctions in multiple organ systems. This study investigated the toxic effects of ß-CYP, its isomers, metabolite 3-phenoxybenzoic acid (3-PBA), and 17ß-estradiol (E2) on HTR-8/SVneo cells. We focused on the toxic mechanisms of ß-CYP and its specific isomers. Our results showed that ß-CYP and its isomers inhibit HTR-8/SVneo cell proliferation similarly to E2, with 100 µM 1S-trans-αR displaying significant toxicity after 48 h. Notably, 1S-trans-αR, 1R-trans-αS, and ß-CYP were more potent in inducing apoptosis and cell cycle arrest than 1R-cis-αS and 1S-cis-αR at 48 h. AO/EB staining and flow cytometry indicated dose-dependent apoptosis in HTR-8/SVneo cells, particularly at 100 µM 1R-trans-αS. Scratch assays revealed that ß-CYP and its isomers variably reduced cell migration. Receptor inhibition assays demonstrated that post-ICI 182780 treatment, which inhibits estrogen receptor α (ERα) or estrogen receptor ß (ERß), ß-CYP, its isomers, and E2 reduced HTR-8/SVneo cell viability, whereas milrinone, a phosphodiesterase 3 A (PDE3A) inhibitor, increased viability. Molecular docking studies indicated a higher affinity of ß-CYP, its isomers, and E2 for PDE3A than for ERα or ERß. Consequently, ß-CYP, its isomers, and E2 consistently led to decreased cell viability. Transcriptomics and RT-qPCR analyses showed differential expression in treated cells: up-regulation of Il24 and Ptgs2, and down-regulation of Myo7a and Pdgfrb, suggesting the PI3K-AKT signaling pathway as a potential route for toxicity. This study aims to provide a comprehensive evaluation of the cytotoxicity of chiral pesticides and their mechanisms.


Asunto(s)
Apoptosis , Piretrinas , Humanos , Piretrinas/toxicidad , Piretrinas/farmacología , Apoptosis/efectos de los fármacos , Línea Celular , Simulación del Acoplamiento Molecular , Estradiol/farmacología , Proliferación Celular/efectos de los fármacos , Insecticidas/toxicidad , Insecticidas/farmacología , Insecticidas/química , Isomerismo , Movimiento Celular/efectos de los fármacos , Benzoatos/farmacología , Benzoatos/química , Estereoisomerismo , Supervivencia Celular/efectos de los fármacos , Receptor alfa de Estrógeno/metabolismo , Puntos de Control del Ciclo Celular/efectos de los fármacos
15.
Cell Rep ; 43(4): 114064, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38578830

RESUMEN

Assembly of TopBP1 biomolecular condensates triggers activation of the ataxia telangiectasia-mutated and Rad3-related (ATR)/Chk1 signaling pathway, which coordinates cell responses to impaired DNA replication. Here, we used optogenetics and reverse genetics to investigate the role of sequence-specific motifs in the formation and functions of TopBP1 condensates. We propose that BACH1/FANCJ is involved in the partitioning of BRCA1 within TopBP1 compartments. We show that Chk1 is activated at the interface of TopBP1 condensates and provide evidence that these structures arise at sites of DNA damage and in primary human fibroblasts. Chk1 phosphorylation depends on the integrity of a conserved arginine motif within TopBP1's ATR activation domain (AAD). Its mutation uncouples Chk1 activation from TopBP1 condensation, revealing that optogenetically induced Chk1 phosphorylation triggers cell cycle checkpoints and slows down replication forks in the absence of DNA damage. Together with previous work, these data suggest that the intrinsically disordered AAD encodes distinct molecular steps in the ATR/Chk1 pathway.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Proteínas de Unión al ADN , Humanos , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo , Fosforilación , Proteínas de Unión al ADN/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Daño del ADN , Proteínas Portadoras/metabolismo , Replicación del ADN , Proteínas del Grupo de Complementación de la Anemia de Fanconi/metabolismo , Proteína BRCA1/metabolismo , Transducción de Señal , Proteínas Nucleares/metabolismo , Fibroblastos/metabolismo , Puntos de Control del Ciclo Celular
16.
Sci Rep ; 14(1): 9636, 2024 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-38671055

RESUMEN

In consideration of the chromones' therapeutic potential and anticancer activity, a new series of chromanone derivatives have been synthesized through a straightforward reaction between 6-formyl-7-hydroxy-5-methoxy-2-methylchromone (2) and various organic active compounds. The cytotoxic activity of the newly synthesized congeners was investigated against MCF-7 (human breast cancer), HCT-116 (colon cancer), HepG2 (liver cancer), and normal skin fibroblast cells (BJ1). The obtained data indicated that compounds 14b, 17, and 19 induce cytotoxic activity in the breast MCF7, while compounds 6a, 6b, 11 and 14c showed highly potent activity in the colon cancer cell lines. Overall, the results demonstrate that the potential cytotoxic effects of the studied compounds may be based on their ability to induce DNA fragmentation in cancer cell lines, down-regulate the expression level of CDK4 as well as the anti-apoptotic gene Bcl-2 and up-regulate the expression of the pro-apoptotic genes P53 and Bax. Furthermore, compounds 14b and 14c showed a dual mechanism of action by inducing apoptosis and cell cycle arrest. The docking studies showed that the binding affinity of the most active cytotoxic compounds within the active pocket of the CDK4 enzyme is stronger due to hydrophobic and H-bonding interactions. These results were found to be consistent with the experimental results.


Asunto(s)
Antineoplásicos , Apoptosis , Cromonas , Simulación del Acoplamiento Molecular , Humanos , Cromonas/química , Cromonas/farmacología , Cromonas/síntesis química , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Apoptosis/efectos de los fármacos , Células MCF-7 , Línea Celular Tumoral , Células HCT116 , Células Hep G2 , Quinasa 4 Dependiente de la Ciclina/metabolismo , Puntos de Control del Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Relación Estructura-Actividad , Proteína p53 Supresora de Tumor/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/genética , Ensayos de Selección de Medicamentos Antitumorales
17.
Int J Mol Sci ; 25(8)2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38674139

RESUMEN

The role of metalloproteinases (MMPs) in hematological malignancies, like acute myeloid leukemia (AML), myelodysplastic neoplasms (MDS), and multiple myeloma (MM), is well-documented, and these pathologies remain with poor outcomes despite treatment advancements. In this study, we investigated the effects of batimastat (BB-94), an MMP inhibitor (MMPi), in single-administration and daily administration schemes in AML, MDS, and MM cell lines. We used four hematologic neoplasia cell lines: the HL-60 and NB-4 cells as AML models, the F36-P cells as an MDS model, and the H929 cells as a model of MM. We also tested batimastat toxicity in a normal human lymphocyte cell line (IMC cells). BB-94 decreases cell viability and density in a dose-, time-, administration-scheme-, and cell-line-dependent manner, with the AML cells displaying higher responses. The efficacy in inducing apoptosis and cell cycle arrests is dependent on the cell line (higher effects in AML cells), especially with lower daily doses, which may mitigate treatment toxicity. Furthermore, BB-94 activated apoptosis via caspases and ERK1/2 pathways. These findings highlight batimastat's therapeutic potential in hematological malignancies, with daily dosing emerging as a strategy to minimize adverse effects.


Asunto(s)
Apoptosis , Neoplasias Hematológicas , Fenilalanina/análogos & derivados , Tiofenos , Humanos , Apoptosis/efectos de los fármacos , Neoplasias Hematológicas/tratamiento farmacológico , Neoplasias Hematológicas/patología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Antineoplásicos/farmacología , Citostáticos/farmacología , Proliferación Celular/efectos de los fármacos , Ácidos Hidroxámicos/farmacología , Ácidos Hidroxámicos/uso terapéutico , Células HL-60 , Inhibidores de la Metaloproteinasa de la Matriz/farmacología , Puntos de Control del Ciclo Celular/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/patología
18.
Molecules ; 29(8)2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38675528

RESUMEN

Glioblastoma (GBM), the most frequent and lethal brain cancer in adults, is characterized by short survival times and high mortality rates. Due to the resistance of GBM cells to conventional therapeutic treatments, scientific interest is focusing on the search for alternative and efficient adjuvant treatments. S-Adenosylmethionine (AdoMet), the well-studied physiological methyl donor, has emerged as a promising anticancer compound and a modulator of multiple cancer-related signaling pathways. We report here for the first time that AdoMet selectively inhibited the viability and proliferation of U87MG, U343MG, and U251MG GBM cells. In these cell lines, AdoMet induced S and G2/M cell cycle arrest and apoptosis and downregulated the expression and activation of proteins involved in homologous recombination DNA repair, including RAD51, BRCA1, and Chk1. Furthermore, AdoMet was able to maintain DNA in a damaged state, as indicated by the increased γH2AX/H2AX ratio. AdoMet promoted mitotic catastrophe through inhibiting Aurora B kinase expression, phosphorylation, and localization causing GBM cells to undergo mitotic catastrophe-induced death. Finally, AdoMet inhibited DNA repair and induced cell cycle arrest, apoptosis, and mitotic catastrophe in patient-derived GBM cells. In light of these results, AdoMet could be considered a potential adjuvant in GBM therapy.


Asunto(s)
Antineoplásicos , Apoptosis , Proliferación Celular , Glioblastoma , S-Adenosilmetionina , Humanos , Glioblastoma/tratamiento farmacológico , Glioblastoma/metabolismo , Glioblastoma/patología , S-Adenosilmetionina/farmacología , Línea Celular Tumoral , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/química , Supervivencia Celular/efectos de los fármacos , Reparación del ADN/efectos de los fármacos , Aurora Quinasa B/metabolismo , Aurora Quinasa B/antagonistas & inhibidores , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Recombinasa Rad51/metabolismo , Puntos de Control del Ciclo Celular/efectos de los fármacos , Mitosis/efectos de los fármacos
19.
J Med Chem ; 67(7): 5185-5215, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38564299

RESUMEN

CDK9 is a cyclin-dependent kinase that plays pivotal roles in multiple cellular functions including gene transcription, cell cycle regulation, DNA damage repair, and cellular differentiation. Targeting CDK9 is considered an attractive strategy for antitumor therapy, especially for leukemia and lymphoma. Several potent small molecule inhibitors, exemplified by TG02 (4), have progressed to clinical trials. However, many of them face challenges such as low clinical efficacy and multiple adverse reactions and may necessitate the exploration of novel strategies to lead to success in the clinic. In this perspective, we present a comprehensive overview of the structural characteristics, biological functions, and preclinical status of CDK9 inhibitors. Our focus extends to various types of inhibitors, including pan-inhibitors, selective inhibitors, dual-target inhibitors, degraders, PPI inhibitors, and natural products. The discussion encompasses chemical structures, structure-activity relationships (SARs), biological activities, selectivity, and therapeutic potential, providing detailed insight into the diverse landscape of CDK9 inhibitors.


Asunto(s)
Quinasa 9 Dependiente de la Ciclina , Quinasas Ciclina-Dependientes , Puntos de Control del Ciclo Celular , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Inhibidores de Proteínas Quinasas/química
20.
J Transl Med ; 22(1): 335, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589907

RESUMEN

OBJECTIVE: This study aimed to assess the functions of cell division cycle protein 45 (CDC45) in Non-small cell lung cancer (NSCLC) cancer and its effects on stemness and metastasis. METHODS: Firstly, differentially expressed genes related to lung cancer metastasis and stemness were screened by differential analysis and lasso regression. Then, in vitro, experiments such as colony formation assay, scratch assay, and transwell assay were conducted to evaluate the impact of CDC45 knockdown on the proliferation and migration abilities of lung cancer cells. Western blotting was used to measure the expression levels of related proteins and investigate the regulation of CDC45 on the cell cycle. Finally, in vivo model with subcutaneous injection of lung cancer cells was performed to verify the effect of CDC45 on tumor growth. RESULTS: This study identified CDC45 as a key gene potentially influencing tumor stemness and lymph node metastasis. Knockdown of CDC45 not only suppressed the proliferation and migration abilities of lung cancer cells but also caused cell cycle arrest at the G2/M phase. Further analysis revealed a negative correlation between CDC45 and cell cycle-related proteins, stemness-related markers, and tumor mutations. Mouse experiments confirmed that CDC45 knockdown inhibited tumor growth. CONCLUSION: As a novel regulator of stemness, CDC45 plays a role in regulating lung cancer cell proliferation, migration, and cell cycle. Therefore, CDC45 may serve as a potential target for lung cancer treatment and provide a reference for further mechanistic research and therapeutic development.


Asunto(s)
Adenocarcinoma del Pulmón , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Animales , Ratones , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/patología , Línea Celular Tumoral , Adenocarcinoma del Pulmón/genética , Proliferación Celular/genética , Puntos de Control del Ciclo Celular/genética , División Celular , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Movimiento Celular/genética , Regulación Neoplásica de la Expresión Génica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA